LECTURE 8
Principles of

Operating Systems

CPU SCHEDULING



‘ Scheduling Objectives

= Enforcement of fairness
0 in allocating resources to processes

= Enforcement of priorities
= Make best use of available system resources

= Give preference to processes holding key
resources.

= Give preference to processes exhibiting good
behavior.

= Degrade gracefully under heavy loads.




‘ Program Behavior Issues

= |/O boundedness
= short burst of CPU before blocking for 1/O

= CPU boundedness

= extensive use of CPU before blocking for I/O

= Urgency and Priorities
= Frequency of preemption
= Process execution time

= Time sharing
= amount of execution time process has already received.




'CPU and 1/O Bursts

Maximum CPU utilization obtained with multiprogramming.

FREQUENCY

160
load store o A
add store CPU burs
read from file I
120
wait for I/O 1/O burst . I
store increment I
index CPU bursi| 80
write to file l
wait for [/O } I/O burst 60
40
load store K
add store _ CPU burst| 20
read from file \L
wait for I/O 1/O burst ¢ & Eluns::'3 DURATION B #

CPU-1/O Burst Cycle

Process execution consists of a cycle of CPU execution
and a cycle of I/0 wait.




‘ Levels of Scheduling

= High Level Scheduling or Job Scheduling

= Selects jobs allowed to compete for CPU and other
system resources.

= Intermediate Level Scheduling or Medium
Term Scheduling

= Selects which jobs to temporarily suspend/resume to
smooth fluctuations in system |oad.

= Low Level (CPU) Scheduling or Dispatching

= Selects the ready process that will be assigned the
CPU.

= Ready Queue contains PCBs of processes.




Levels of Scheduling(cont.)

Jobhs
wa lting
1o enter
Jobentry
Jabs
\mmng far e ——
Inltlatlon
Job initiation High tevel scheduling

Processes
m“lng fﬂr AEEEEENEEEEESEEEEEEEEEEEEEEEEEEEEEE
activatian

Activate Intermediate

Suspend fevet scheduling

processes

Dispatch blocks Low fevel scheduiing

tirmeaut

Hunnlnﬂ NN NN NI N SN NN NN NEEEEEEEEEE

processes

job completion

Completed
jobs



‘ CPU Scheduler

= Selects from among the processes In
memory that are ready to execute, and
allocates the CPU to one of them.

a Non-preemptive Scheduling

= Once CPU has been allocated to a process, the process
keeps the CPU until

0 Process exits OR
0 Process switches to waiting state
a Preemptive Scheduling

= Process can be interrupted and must release the CPU.
0 Need to coordinate access to shared data




CPU Scheduling Decisions

= CPU scheduling decisions may take place when
a process:

0 switches from running state to waiting state
0 switches from running state to ready state
0 switches from waiting to ready

0 terminates

= Scheduling under 1 and 4 is non-preemptive.
= All other scheduling is preemptive.




CPU scheduling decisions

new - ~._ admitted

~
~
i

Scheduler
dispatch

1/0 or
event
completion

1/0 or
event wait




‘ Dispatcher

= Dispatcher module gives control of the CPU
to the process selected by the short-term

scheduler. This involves:

0 switching context

0 switching to user mode
O jumping to the proper location in the user program to restart
that program

= Dispatch Latency:
= time it takes for the dispatcher to stop one process and
start another running.

= Dispatcher must be fast.




‘ Scheduling Criteria

= CPU Utllization

= Keep the CPU and other resources as busy as possible

= Throughput

= # of processes that complete their execution per time unit.

= Turnaround time

= amount of time to execute a particular process from its entry time.
= Waiting time

= amount of time a process has been waiting in the ready queue.
= Response Time (in a time-sharing environment)

= amount of time it takes from when a request was submitted until the
first response is produced, NOT output.




 Optimization Criteria

= Maximize CPU Utilization
= Maximize Throughput

= Minimize Turnaround time
= Minimize Waiting time

= Minimize response time




‘ Observations: Scheduling Criteria

= Throughput vs. response time

o Throughput related to response time, but not identical:

= Minimizing response time will lead to more context switching than if
you only maximized throughput

o Two parts to maximizing throughput
= Minimize overhead (for example, context-switching)
= Efficient use of resources (CPU, disk, memory, etc)
= Fairness vs. response time
o Share CPU among users in some equitable way

o Fairness is not minimizing average response time:
= Better average response time by making system less fair




