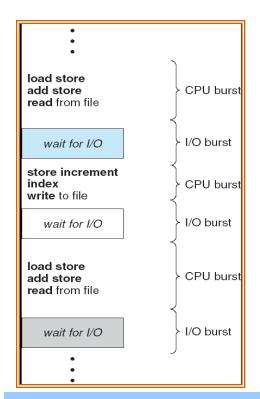
LECTURE 8 Principles of Operating Systems

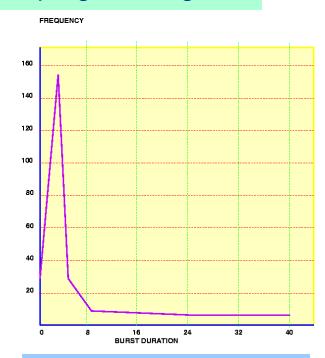
CPU SCHEDULING

Scheduling Objectives


- Enforcement of fairness
 - in allocating resources to processes
- Enforcement of priorities
- Make best use of available system resources
- Give preference to processes holding key resources.
- Give preference to processes exhibiting good behavior.
- Degrade gracefully under heavy loads.

Program Behavior Issues

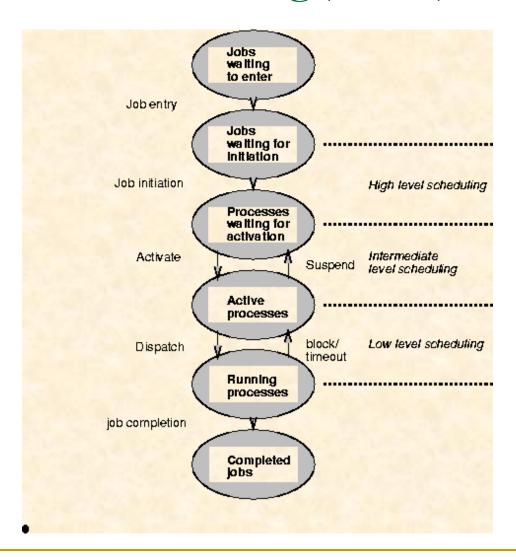
- I/O boundedness
 - short burst of CPU before blocking for I/O
- CPU boundedness
 - extensive use of CPU before blocking for I/O
- Urgency and Priorities
- Frequency of preemption
- Process execution time
- Time sharing
 - amount of execution time process has already received.


CPU and I/O Bursts

Maximum CPU utilization obtained with multiprogramming.

CPU-I/O Burst Cycle

Process execution consists of a cycle of CPU execution and a cycle of I/O wait.

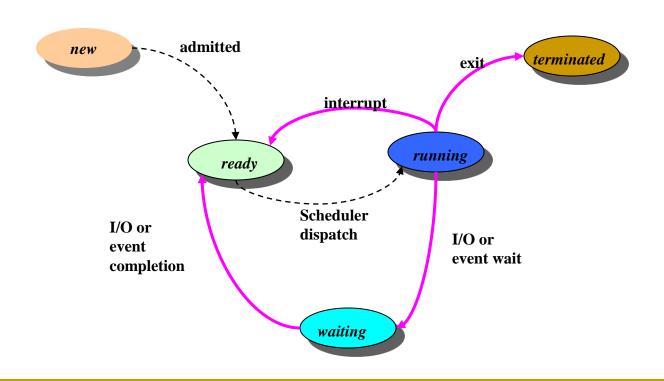


CPU Burst Distribution.

Levels of Scheduling

- High Level Scheduling or Job Scheduling
 - Selects jobs allowed to compete for CPU and other system resources.
- Intermediate Level Scheduling or Medium Term Scheduling
 - Selects which jobs to temporarily suspend/resume to smooth fluctuations in system load.
- Low Level (CPU) Scheduling or Dispatching
 - Selects the ready process that will be assigned the CPU.
 - Ready Queue contains PCBs of processes.

Levels of Scheduling(cont.)


CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them.
 - Non-preemptive Scheduling
 - Once CPU has been allocated to a process, the process keeps the CPU until
 - □ Process exits OR
 - Process switches to waiting state
 - Preemptive Scheduling
 - Process can be interrupted and must release the CPU.
 - Need to coordinate access to shared data

CPU Scheduling Decisions

- CPU scheduling decisions may take place when a process:
 - switches from running state to waiting state
 - switches from running state to ready state
 - switches from waiting to ready
 - terminates
- Scheduling under 1 and 4 is non-preemptive.
- All other scheduling is preemptive.

CPU scheduling decisions

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler. This involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch Latency:
 - time it takes for the dispatcher to stop one process and start another running.
 - Dispatcher must be fast.

Scheduling Criteria

CPU Utilization

Keep the CPU and other resources as busy as possible

Throughput

of processes that complete their execution per time unit.

Turnaround time

amount of time to execute a particular process from its entry time.

Waiting time

amount of time a process has been waiting in the ready queue.

Response Time (in a time-sharing environment)

 amount of time it takes from when a request was submitted until the first response is produced, NOT output.

Optimization Criteria

- Maximize CPU Utilization
- Maximize Throughput
- Minimize Turnaround time
- Minimize Waiting time
- Minimize response time

Observations: Scheduling Criteria

- Throughput vs. response time
 - Throughput related to response time, but not identical:
 - Minimizing response time will lead to more context switching than if you only maximized throughput
 - Two parts to maximizing throughput
 - Minimize overhead (for example, context-switching)
 - Efficient use of resources (CPU, disk, memory, etc)
- Fairness vs. response time
 - Share CPU among users in some equitable way
 - Fairness is not minimizing average response time:
 - Better average response time by making system less fair